Minggu, 15 Januari 2012

Application Remote sensing

Applications of remote sensing data
  1. Conventional radar is mostly associated with aerial traffic control, early warning, and certain large scale meteorological data. Doppler radar is used by local law enforcements’ monitoring of speed limits and in enhanced meteorological collection such as wind speed and direction within weather systems. Other types of active collection includes plasmas in the ionosphere. Interferometric synthetic aperture radar is used to produce precise digital elevation models of large scale terrain (See RADARSAT, TerraSAR-X, Magellan).
  2. Laser and radar altimeters on satellites have provided a wide range of data. By measuring the bulges of water caused by gravity, they map features on the seafloor to a resolution of a mile or so. By measuring the height and wave-length of ocean waves, the altimeters measure wind speeds and direction, and surface ocean currents and directions.
  3. Light detection and ranging (LIDAR) is well known in examples of weapon ranging, laser illuminated homing of projectiles. LIDAR is used to detect and measure the concentration of various chemicals in the atmosphere, while airborne LIDAR can be used to measure heights of objects and features on the ground more accurately than with radar technology. Vegetation remote sensing is a principal application of LIDAR.
  4. Radiometers and photometers are the most common instrument in use, collecting reflected and emitted radiation in a wide range of frequencies. The most common are visible and infrared sensors, followed by microwave, gamma ray and rarely, ultraviolet. They may also be used to detect the emission spectra of various chemicals, providing data on chemical concentrations in the atmosphere.
  5. Stereographic pairs of aerial photographs have often been used to make topographic maps by imagery and terrain analysts in trafficability and highway departments for potential routes.
  6. Simultaneous multi-spectral platforms such as Landsat have been in use since the 70’s. These thematic mappers take images in multiple wavelengths of electro-magnetic radiation (multi-spectral) and are usually found on Earth observation satellites, including (for example) the Landsat program or the IKONOS satellite. Maps of land cover and land use from thematic mapping can be used to prospect for minerals, detect or monitor land usage, deforestation, and examine the health of indigenous plants and crops, including entire farming regions or forests.
  7. Hyperspectral imaging produces an image where each pixel has full spectral information with imaging narrow spectral bands over a contiguous spectral range. Hyperspectral imagers are used in various applications including mineralogy, biology, defence, and environmental measurements.
  8. Within the scope of the combat against desertification, remote sensing allows to follow-up and monitor risk areas in the long term, to determine desertification factors, to support decision-makers in defining relevant measures of environmental management, and to assess their impacts.
Geodetic
Overhead geodetic collection was first used in aerial submarine detection and gravitational data used in military maps. This data revealed minute perturbations in the Earth’s gravitational field (geodesy) that may be used to determine changes in the mass distribution of the Earth, which in turn may be used for geological studies.
Acoustic and near-acoustic
  • Sonar: passive sonar, listening for the sound made by another object (a vessel, a whale etc); active sonar, emitting pulses of sounds and listening for echoes, used for detecting, ranging and measurements of underwater objects and terrain.
  • Seismograms taken at different locations can locate and measure earthquakes (after they occur) by comparing the relative intensity and precise timing.
To coordinate a series of large-scale observations, most sensing systems depend on the following: platform location, what time it is, and the rotation and orientation of the sensor. High-end instruments now often use positional information from satellite navigation systems. The rotation and orientation is often provided within a degree or two with electronic compasses. Compasses can measure not just azimuth (i. e. degrees to magnetic north), but also altitude (degrees above the horizon), since the magnetic field curves into the Earth at different angles at different latitudes. More exact orientations require gyroscopic-aided orientation, periodically realigned by different methods including navigation from stars or known benchmarks.
Resolution impacts collection and is best explained with the following relationship: less resolution=less detail & larger coverage, More resolution=more detail, less coverage. The skilled management of collection results in cost-effective collection and avoid situations such as the use of multiple high resolution data which tends to clog transmission and storage infrastructure.
Data processing

Generally speaking, remote sensing works on the principle of the inverse problem. While the object or phenomenon of interest (the state) may not be directly measured, there exists some other variable that can be detected and measured (the observation), which may be related to the object of interest through the use of a data-derived computer model. The common analogy given to describe this is trying to determine the type of animal from its footprints. For example, while it is impossible to directly measure temperatures in the upper atmosphere, it is possible to measure the spectral emissions from a known chemical species (such as carbon dioxide) in that region. The frequency of the emission may then be related to the temperature in that region via various thermodynamic relations.
The quality of remote sensing data consists of its spatial, spectral, radiometric and temporal resolutions.
·         Spatial resolution
The size of a pixel that is recorded in a raster image – typically pixels may correspond to square areas ranging in side length from 1 to 1,000 metres (3.3 to 3,300 ft).
·         Spectral resolution
The wavelength width of the different frequency bands recorded – usually, this is related to the number of frequency bands recorded by the platform. Current Landsat collection is that of seven bands, including several in the infra-red spectrum, ranging from a spectral resolution of 0.07 to 2.1 μm. The Hyperion sensor on Earth Observing-1 resolves 220 bands from 0.4 to 2.5 μm, with a spectral resolution of 0.10 to 0.11 μm per band.
·         Radiometric resolution
The number of different intensities of radiation the sensor is able to distinguish. Typically, this ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up to 16,384 intensities or "shades" of colour, in each band. It also depends on the instrument noise.
·         Temporal resolution
The frequency of flyovers by the satellite or plane, and is only relevant in time-series studies or those requiring an averaged or mosaic image as in deforesting monitoring. This was first used by the intelligence community where repeated coverage revealed changes in infrastructure, the deployment of units or the modification/introduction of equipment. Cloud cover over a given area or object makes it necessary to repeat the collection of said location.
In order to create sensor-based maps, most remote sensing systems expect to extrapolate sensor data in relation to a reference point including distances between known points on the ground. This depends on the type of sensor used. For example, in conventional photographs, distances are accurate in the center of the image, with the distortion of measurements increasing the farther you get from the center. Another factor is that of the platen against which the film is pressed can cause severe errors when photographs are used to measure ground distances. The step in which this problem is resolved is called georeferencing, and involves computer-aided matching up of points in the image (typically 30 or more points per image) which is extrapolated with the use of an established benchmark, "warping" the image to produce accurate spatial data. As of the early 1990s, most satellite images are sold fully georeferenced.
In addition, images may need to be radiometrically and atmospherically corrected.
·         Radiometric correction
gives a scale to the pixel values, e. g. the monochromatic scale of 0 to 255 will be converted to actual radiance values.
·         Atmospheric correction
eliminates atmospheric haze by rescaling each frequency band so that its minimum value (usually realised in water bodies) corresponds to a pixel value of 0. The digitizing of data also make possible to manipulate the data by changing gray-scale values.
Interpretation is the critical process of making sense of the data. The first application was that of aerial photographic collection which used the following process; spatial measurement through the use of a light table in both conventional single or stereographic coverage, added skills such as the use of photogrammetry, the use of photomosaics, repeat coverage, Making use of objects’ known dimensions in order to detect modifications. Image Analysis is the recently developed automated computer-aided application which is in increasing use.
Object-Based Image Analysis (OBIA) is a sub-discipline of GIScience devoted to partitioning remote sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through spatial, spectral and temporal scale.
Old data from remote sensing is often valuable because it may provide the only long-term data for a large extent of geography. At the same time, the data is often complex to interpret, and bulky to store. Modern systems tend to store the data digitally, often with lossless compression. The difficulty with this approach is that the data is fragile, the format may be archaic, and the data may be easy to falsify. One of the best systems for archiving data series is as computer-generated machine-readable ultrafiche, usually in typefonts such as OCR-B, or as digitized half-tone images. Ultrafiches survive well in standard libraries, with lifetimes of several centuries. They can be created, copied, filed and retrieved by automated systems. They are about as compact as archival magnetic media, and yet can be read by human beings with minimal, standardized.
Data processing levels
To facilitate the discussion of data processing in practice, several processing “levels” were first defined in 1986 by NASA as part of its Earth Observing System  and steadily adopted since then, both internally at NASA and elsewhere these definitions are:
Level
Description
0
Reconstructed, unprocessed instrument and payload data at full resolution, with any and all communications artifacts (e. g., synchronization frames, communications headers, duplicate data) removed.
1a
Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters (e. g., platform ephemeris) computed and appended but not applied to the Level 0 data (or if applied, in a manner that level 0 is fully recoverable from level 1a data).
1b
Level 1a data that have been processed to sensor units (e. g., radar backscatter cross section, brightness temperature, etc.); not all instruments have Level 1b data; level 0 data is not recoverable from level 1b data.
2
Derived geophysical variables (e. g., ocean wave height, soil moisture, ice concentration) at the same resolution and location as Level 1 source data.
3
Variables mapped on uniform spacetime grid scales, usually with some completeness and consistency (e. g., missing points interpolated, complete regions mosaicked together from multiple orbits, etc).
4
Model output or results from analyses of lower level data (i. e., variables that were not measured by the instruments but instead are derived from these measurements).
A Level 1 data record is the most fundamental (i. e., highest reversible level) data record that has significant scientific utility, and is the foundation upon which all subsequent data sets are produced. Level 2 is the first level that is directly usable for most scientific applications; its value is much greater than the lower levels. Level 2 data sets tend to be less voluminous than Level 1 data because they have been reduced temporally, spatially, or spectrally. Level 3 data sets are generally smaller than lower level data sets and thus can be dealt with without incurring a great deal of data handling overhead. These data tend to be generally more useful for many applications. The regular spatial and temporal organization of Level 3 datasets makes it feasible to readily combine data from different sources.

Tidak ada komentar:

Posting Komentar